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Institute of Physics, University of Lodz, ul Nowotki 149/153, 90-236 Lodz, Poland 

Received 29 April 1987, in final form 13 October 1987 

Abstract. An infinite sequence of new representations having Froman and Froman's form 
has been found for the solutions to the one-dimensional Schrodinger equation (SE). This 
enables us to construct, in compact WKBJ-like form, approximate solutions to SE. The 
new approximate solutions have the property that their asymptotic expansions in h coincide 
with the corresponding asymptotic expansions of the exact solutions to any, a priori given, 
order in h. They generalise the well known W K B J  formula, being in this scheme the 
zeroth-order approximation. The generalised W K B J  formulae are then tested by the quanti- 
sation of the simplest quantum mechanical systems of the harmonic and anharmonic 
(quartic) oscillators as well as a more complicated one of a double-well potential. The 
approximate quantisation rules (a  generalisation of the well known Bohr-Sommerfeld 
quantisation conditions) for the general polynomial potential is finally obtained and the 
formulae for calculating the necessary corrections are derived. The limiting formal solutions 
to SE having the W K B J  form are also presented. Their asymptotic expansions in h reproduce 
those found by Froman. 

1. Introduction 

The WKBJ  formula (Wentzel 1926, Kramers 1926, Brillouin 1926, Jeffreys 1923, Dunham 
1932) provides us with rather simple and surprisingly good approximate solution to 
the SE.  For this reason it is widely used in many approximate calculations of quantum 
mechanical quantities (see, for example, Berry and Mount 1972, Hioe et a1 1978), 
especially if the problem under consideration cannot be handled by more common 
perturbative calculations. Different tunnelling effects, as well as other effects caused 
by potential barriers (e.g. the tiny effect of the ground-state energy in the case of a 
quantum mechanical potential with broken supersymmetry (Giler et a1 1986)), are 
examples in which the use of the WKBJ formula gives correct results. 

However, there are always theoretical efforts to improve the accuracy of the WKBJ 

approximation. On one side, these include the direct modification of the WKBJ formula 
(Froman 1966, Froman and Froman 1974a, b) and on the other side new methods are 
being developed to investigate the asymptotic behaviour of the solutions to the SE 

(Balian et a1 1979, Voros 1983). 
From the mathematical point of view the WKBJ formula has two distinct features. 
(i) It is a well defined dominant term of the exact solution to the SE, whose accuracy 

can be determined precisely (Froman and Froman 1965). 
(i i)  It generates the zeroth-order term of the asymptotic series in h, which corre- 

sponds to the exact solution to the SE. 

An important generalisation of the WKBJ  formula has been found by Froman (1966) 
(see also Froman and Froman (1974a, b) for later modifications). It preserves the 
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compact form of the WKBJ formula and has the same asymptotic expansion in h as 
the exact solution to the SE. However, Froman’s formula, which was argued to be very 
useful in applications (see Dammert and Froman (1980) for relevant discussion and 
references), has, from our point of view, at least two main disadvantages. Firstly, the 
formula is constructed with the help of an asymptotic series, which, in most cases, is 
divergent. Therefore to give finite quantities the series has to be truncated. Secondly, 
it is usually very difficult to estimate the level of the accuracy for quantities obtained 
in such a way, since the truncated formula constitutes an unknown part of the exact 
solution to the SE. It seems therefore to be useful to find such approximate solutions 
to the SE, which 

(i)  would have as compact a form as the WKBJ one; 
(ii) would be a well defined dominant term of the exact solution to the SE; and 
(iii) would differ asymptotically from the exact solutions to an a priori given order 

in h. 
It is the aim of this paper to show that such generalisations of the WKBJ formula 

do exist and to give an algorithm for their construction. 
To achieve the purposes stated above we use extensively a method which consists 

in changing the variable in the SE repeatedly and in using the Froman and Froman 
(FF) form of the solutions to the new equations (Froman and Froman 1965). In fact, 
the variables which we use consecutively in the SE are the action variables. They 
transform the equation preserving its form. This enables us to construct each time the 
corresponding solutions to the new equations in the form of the FF series, the first 
term of which represents the approximate solutions with the desired properties. 

The paper is organised as follows. In the next section the solutions to the SE in 
the FF form are given and their main properties are summarised. In Q 3 we construct 
approximate solutions to the SE with desired properties. In 0 4 the approximate 
solutions obtained in 0 3 are applied to a ‘school‘ example of the harmonic oscillator 
as well as to an anharmonic (quartic) one. We show that the energy spectra in the 
case of the harmonic oscillator are the same, independent of the approximation we 
use and coincide with the energy spectrum given by the commonly used WKBJ formula, 
i.e. they are exact. In the same section we consider also the case of a double-well 
potential given by a polynomial of the sixth degree. Having considered these particular 
examples we investigate finally the general case. In § 5 we present explicitly the exact 
solutions to the SE having the WKBJ form but being rather formal ones and we explain 
their asymptotic meanings. However, we find that the asymptotic form in h for these 
solutions reproduces those found by Froman (1966). We also discuss in this section 
the problem of the resummation arising due to the FF forms of the solutions. We 
conclude with § 6. 

2. Froman and Froman’s form of the solution to the SE 

To simplify our further considerations and to make them more definite, we shall assume 
that the potential U ( x )  in the S E  is just a polynomial of the degree 2n, n = 1,2,. . . , 
with real coefficients. This restriction is, however, not very serious and can be relaxed 
in many physically interesting cases (such as the case of the Coulomb potential, for 
example). Let us now write the (one-dimensional) Schrodinger equation in the form 

(1)  9 Y X )  - O ( X ) 4 ( X )  = 0 
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where 

Q ( x )  = 2m[ U ( x )  - E ] / h 2  

U ( x )  = a Z n X 2 " +  a Z n - , X ~ " - l + .  . . + a , x + a ,  

with > 0. 
It is convenient in (1) to make a replacement x + x ( E / a 2 n ) l " n .  Putting also 

a 2  = 2 m ~ ( n + l ) / n / ( h 2 a l / n  2 n  j ,  V ( x ,  E ) =  U ( x ( E / a 2 n ) " 2 " ) / E ,  q ( x ) =  V ( x ) - 1  and + ( x ) =  
~ ( x ( ~ / a ~ ~ ) ' l ~ " )  we get 

+ " ( x ) - a 2 q ( x ) + ( x ) = O .  ( 2 )  

+ J X )  = q - I I 4 ( x )  exp[aS(t",  X ) I L ( X )  a=*l  (3) 

Note that the variables x and a are dimensionless. By making the ansatz 

where 
r r  

S ( x o ,  x ) =  x l ( x o ,  x )  = a J q " ' ( ~ )  d[ 
I; 

q ( x 0 )  = 0 
(4) 

we obtain the appropriate equation determining G U ( x ) .  Solving by iteration we get 

where 

In equation ( 5 )  the path y " ( & )  of the integrations starts from the infinity of the x 
plane and  goes to 5, in such a way so as to ensure that Re [,+, changes monotonically 
everywhere along the path, as well as to have Re - & ) S O  along the path. The 
series in ( 5 )  is uniformly convergent under the condition that 

for the paths y " ( x l )  chosen as above. It is easy to check that ( 7 )  is satisfied by our 
choice of U ( x ) .  

Let us discuss briefly the dependence of the series (5) on h. If U ( x )  is independent 
of h then the nth term ( n  2 0) of the series (5) being proportional to a-" simultaneously 
has the factor h". Of course, it does not mean that the term has no  additional 
dependence on h, but when h + O  this term vanishes at least as A " .  It therefore 
contributes to the nth term of the corresponding asymptotic series for the solution (3). 

A convenient way to describe the validity domains of the representations (3) and  
( 5 )  is to draw the so-called Stokes' graph ( s G ) .  Such a graph consists of Stokes' lines 
(SL) given by the equation Re S ( x o ,  x )  = 0 for all roots x o  of q ( x ) .  Every system of SL 
divides the whole complex x plane into the set of disjoint sectors. Solutions of the 
form given by (3) and ( 5 )  can be constructed in each sector which contain +a or --a3 

of Re S ( x o ,  x )  and in each such sector it is uniquely (up  to a constant) determined by 
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the condition of vanishing as x+oo in this sector. I t  can be analytically continued 
(with the help of the representation (3)-(5)) to those other sectors to which the 
integration path can be continued. In all such sectors it grows exponentially. Moreover, 
any two solutions of the form (3)-(5) corresponding to different sectors are linearly 
independent. This fact is the obvious consequence of their asymptotic behaviour 
described above. 

3. Approximate solutions to SE to a given order of accuracy 

The usual WKBJ formula follows directly from the solution (3) if instead of (7) we have 

inf j- 141(5)-1lld5l<< 1. (8) 

The condition (8)  can be satisfied if a is sufficiently large, at fixed x, and if by increasing 
a we do not change the picture of the corresponding Stokes’ graph. It means that 

Y P ( . T , )  

(i)  the WKBJ formula works well for rather high energy levels; and 
(ii) it constitutes the zeroth-order term of the asymptotic series for the solution ( 3 ) .  
Let us notice that if a +a (at fixed x)  the variable S(xo, x) as defined by (4) also 

grows to infinity. So the action S seems to be a very convenient variable when the 
WKBJ formula is investigated. 

The choice of the action as the new variable in the SE also has another useful 
property: it does not change the form (2) of the SE. To see this, let us define the 
following new quantities: 

a x , )  = a*q(x)  

4o(x1) = 

ccll(xl) = P 4 ( x 1 ) 4 0 ( x 1 )  (9) 

where xI is defined by (4). It is straightforward to check that ql(xl) now satisfies the 
equation 

$;(XI) - q,(x,)ccl1(x,) = 0 (10) 

which, of course, is formally the same as (2). Obviously, the main difference between 
them is now in the domains, where the functions q ( x )  and ql(xl) are defined. For the 
first one it is simply, by assumption, the x plane. For the second, however, it can be 
a complicated Riemann surface, which arises as the result of the transformation (4). 
No matter how complicated the surface is, we can always write the solution +,(xl) of 
(10) in the FF form (3) and (5) with appropriate definitions of the quantities (4) and 
( 6 ) .  This is possible since, by our assumptions about U ( x ) ,  an analogue ofthe condition 
( 7 )  is also fulfilled in the case of equation (10) (see appendix 1). Similarly, drawing 
the corresponding SL on the Riemann surface of the x, variable, we get the domains 
where the solutions $,(xi) are defined. 
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It is now clear that the above procedure can be continued inductively with the kth 
step being 

q k - l ( X 0 k - 1 )  = o  
. 'h - l  

xk(x", l ,  x k - 1 )  = qP1(5 )d5  
TA-I 

4 k - I ( X k )  $ k - l ( x k - l )  

and 

$ l ( x l ,  - q k  ( x k  1 $k ( x k  = 0. (12) 
We have made the following identification with the quantities introduced earlier (see 
(2)  and (9)): 

XO'X $ o ( x o )  = $ ( X I  

i O ( X l )  = @(XI) 

$ y ( x k )  = q ; " " ( X k )  exp[uxk+l(xi, x k ) 1 6 ; ( x k )  u = * l  (14) 

(13) 
q o ( x 0 )  = a 2 q ( x ) .  

The solution of (12) can be written in the FF form as follows: 

with $ r ( x k )  defined by ( 5 )  and ( 6 )  where obvious changes of variables ( X ~ + X ~ + ~ ,  
q l + q k + I )  and integrations (over the & + I  Riemann surface) should be done. The 
existence of the solutions $; in the form (14) is guaranteed at each step by our 
assumption about U ( x ) ,  since the condition (7) is satisfied for any k 3 0 (see appendix 
1 ) .  The validity domain of every particular solution (14) is controlled by appropriate 
SG drawn on the x k  surface. 

Now let us come back to the main object of our interest, namely to the wavefunction 
$(x)-the solution of the SE (2). Using the definitions (9), (10) and (13) we get 

$ c r ( x ) = [ q ( x ) q l ( x l ( x ) )  . . q k ( x k ( x ) ) l - " 4  

where x , ( x )  is the composition x, = x , - ~  0 x , - ~  0 . . . 0 xl, i = 1, . . . , k, of the appropriate 
transformations defined by ( l l ) ,  and 6: is the projection of x i  onto the x plane, i.e. 

Of course all other properties of the solutions J / E ( x k )  are also projected onto the 
x plane. In particular, the validity domain of the representation ( 1 5 )  is given by SG 

in the x plane, defined as a set of lines along which Re s k ( 6 ; , ,  x)  = 0, with S, given by 

S k ( 6 0 k ,  x, = [q('$)q1(x1(6)) . . . q k ( X k ( 6 ) ) 1 1 ' 2 d 6  (16) 

X k ( 5 0 k )  = x:. 

I:: 
for all choices of the roots 6: of the equation q k ( X k ( 6 : ) )  = 0. 
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We shall call the forms ( 1 5 )  of the solutions to the SE, with k fixed, their kth FF 

forms. The Stokes’ graph corresponding to the kth FF forms we shall call the kth 
Stokes’ graph. 

The most striking feature of the representation ( 1 5 )  (when U ( x )  is independent of 
h )  is that the nth term ( n  2 1 )  of the series ( 5 ) ,  corresponding to $ : ( X k ) ,  is proportional 

(see appendix 2 ) .  It follows then immediately that 
the expression 

and therefore to to a - 2 k - n  

x ; ‘ (x)  = [ q ( x ) q l ( x i ( x ) )  . 9 qk(xk(x) )I -”4  exp[ask((0k 3 x ) ]  ( 1 7 )  

satisfies equation ( 2 )  approximately under the assumption (see appendix 4) 

Since the LHS of ( 1 8 )  contains the factor the above inequality seems to be 
satisfied much better than ( 8 )  for the same energy. In other words, the approximation 
( 1 7 )  can be good even for those lower lying energy states for which the usual WKBJ 

formula fails. 
Another good property of ( 1 7 )  is that its asymptotic series in h is identical, up to 

order h Z k ,  with that of the exact solution ( 1 5 ) .  
Equation ( 1 7 )  therefore has the main properties we are looking for. It can be 

constructed for any integral k 3 0 starting with the conventional WKBJ approximation. 
So, it represents the natural generalisation of the latter. Therefore we shall call the 
approximations ( 1 7 )  for fixed k the kth WKBJ formulae (or the kth WKBJ approxima- 
tions). 

At each step of constructing the solutions ( 1 5 )  and their approximations ( 1 7 )  we 
have chosen a particular root of the current potential to define a new subsequent 
variable for the transformed equation (see ( 1 1 )  and (12)). Therefore the question 
might arise whether different choice of the roots could affect the final results of the 
procedure (see equations ( 1 5 ) - ( 1 7 ) ) ,  i.e. whether we could get other solutions of the 
form ( 1 5 )  with, correspondingly, other SG by choosing another set of roots in the 
intermediate steps. 

The negative answer to this question is contained in the final form of the solutions 
( 1 5 ) .  Each quantity from the solution ( 1 5 )  is constructed only from the function 
( q q ,  . . . qk)(X)  and its integrals. The function ( q q ,  . .  . q k ) ( x )  alone is independent of 
the choice of the roots in any step of the construction procedure since it is obtained 
locally from the function q and its derivatives by algebraic operations (see (1 1 ) ) .  

The action s k  depends only on the roots of ( q q ,  . . . qk)(X) ,  i.e. on the final choice 
of one of them. However, as follows from ( 1 6 ) ,  any two different choices of the root 
can change Sk only by a constant. Of course this cannot influence the SG since it is 
drawn by making use of all the roots of ( q q ,  . . . q k ) ( X ) .  

Finally, the functions & ( x k ( x ) )  do not depend at all on the choice of the roots in 
the intermediate steps, by their definition (5) for the following reasons: firstly, because 
any such choice does not affect SG and this is crucial for the definition of $ k ( x k ( x ) ) ;  
and secondly, because the integrands in (5) depend on ( qqr . . . qk)(X)  and its derivatives 
algebraically and the action S occurs there only in the form of differences. 

Therefore the conclusion is that any other choice of a set of roots always leads to 
the same set of the solutions ( 1 5 )  (if one neglects possible multiplicative constants 
arising from different definitions of & ) a  
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Another question that can arise is connected with possible relations between the 
solutions having different FF forms. However, the discussion of this topic is left to 
§ 5, after presenting the results of particular applications of the formulae (15) and (17). 

4. The harmonic and anharmonic (quartic) oscillators and the double-well potential 
quantised by generalised WKBJ formulae 

To see the main difference (but also similarities) between the applications of the usual 
WKBJ formula and its generalisations we shall first sketch the way of using the former 
for the harmonic and quartic oscillators, as well as for the double-well potential and 
next describe the use of the generalised formulae. 

The general prescription for using both the usual and generalised W K B J  formulae 
is to remember that: 

( i )  they are approximate solutions to the SE given in FF forms, so they can be used 
only in the appropriate domains of their validity given by the corresponding Stokes’ 
graph; and 

(ii) any two of them defined in their appropriate regions should be regarded 
formally as linearly independent (although in fact they are not); on the other hand, 
any of them can be (formally) expressed as a linear combination of any two others. 

4.1. The harmonic oscillator case 

The Stokes’s graph for the usual WKBJ  formula is shown for this case in figure 1 
(q(x) = x2- 1). Let X k ,  k = 1,2,3,3,  denote the WKBJ formulae for the appropriate 
regions of the graph. The quantisation condition then becomes 

Xl(X) = (19)  

where C is a (real) constant. Both X ,  and x3 can be continued to the regions 2 and 
2 and therefore the constant C can be calculated as follows: 
- 

h, Im x 

2 
1 

R e x  

I 2 

Figure 1. The zeroth SG for the harmonic oscillator 
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Taking into account that 

~ , = i q - ' / ~ e x p [ - ~ ( - l , x ) ]  

,y3 = q-1'4 exp[-S(1, x)]  

we get 

C = i exp[ -S+(  -1, I ) ]  = -i exp[ - % ( - I ,  I ) ]  

where '5' at S+(- l ,  1 )  denote the integrations above or below the cut ( - 1 ,  11, respec- 
tively. Equations (21) can be satisfied and the constant C can be real, if 

exp( -a $ I q112 d t )  = -1 (22a) 

or 

4 q"' d t  = (2n + 1 ) ~ .  
1 

Equation (226) is the usual Bohr-Sommerfeld quantisation condition giving the well 
known exact energy spectrum in the case considered. 

What happens if we use the next approximate solution (17) (in the sequence)? 
Firstly, it changes the Stokes' diagram (figure 2),  since a new (a2qq,)(x)  is now 

1 2  5x2 
("qq,Nx) = a2[ x2-  1 + 2  (--4] x - 1  ( x  - 1 )  - 

The function (a2qql)(x)  now has zeros at the points A , ,  C,, c,, and B , ,  D , ,  D, 
(at a distance proportional to from the points (-l,O), (1,O) respectively) and 
poles at the points (-1, 0), ( 1 , O ) .  The number of independent solutions remains the 
same as well as does the quantisation procedure (19)-(22), where one needs to only 
change q into qql .  So the quantisation condition now becomes 

(24) 

Figure 2. The first SG for the harmonic oscillator. 
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where I ,  is shown in figure 2. Does this new formula give a result different from (22)? 
To evaluate the integral in (24), we use the residue theorem to get 

-yil ( q q l ) ” 2 ( [ ) d ( = m x = 2 v E / h  (25) 

since outside the contour I , ,  (qql)1’2 is meromorphic with a simple pole at the infinity. 
So the result for the energy spectrum is the same as before. 

It is now also clear what result will be obtained with the help of the kth approxima- 
tion (17). The kth SG should look as in figure 3. The additional SL appearing in the 
figure and running to infinity cannot produce new domains with new solutions since 
the graph in figure 3 must collapse into the graph in figure 1 if h + 0. For the same 
reason, the blob in the centre of figure 3 contains all singularities of the function 
(qq, . . . qk) (x )  and all the cuts of (qql . . . qk)”’(x) (except those shown explicitly in 
figure 3). Therefore the quantisation condition still remains the same: 

(26) 

and the evaluation of its LHS (easily done as before) gives the same result (25). 
Thus the conditions (22), (25) and (261, although obtained as approximate, give 

the same result for the energy spectrum. Moreover, this result is exact. It should not, 
however, be unexpected since, in fact, all these conditions are exact, i.e. they would 
remain unchanged if we used the exact solutions (15) (instead of their approximations 
(17)) in the quantisation procedure to get them. Of course, it is not true in general. 

The striking common feature of the conditions (22), (24) and ( 2 6 )  is their identical 
Bohr-Sommerfeld form. It is therefore natural to call (26) the kth generalised Bohr- 
Sommerfeld condition (k th  GBS condition). 

I 
I 

Figure 3. The kth s c  for the harmonic oscillator 

4.2. The anharmonic (quartic) oscillator case 

As a second example let us consider the potential U ( x )  = x4. For the zeroth approxima- 
tion (17) ( k  = 0) the SG looks as in figure 4. Following the previous procedure we get 
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2 1 3  

Rex 
____z 

Figure4. The zeroth SG for the quartic oscillator. 

the quantisation condition as in ( 2 2 )  where now q ( x )  = x4- 1, CY’ = 2 E 3 ’ 2 / h 2  and the 
contour I is shown in figure 4. The (trivial) solution to this condition is 

The above formula is valid for those E, which satisfy additionally the following 
inequality (see (19) and appendix 4): 

Performing integrations in (28) we get the following estimation for n, for which 

Let us now take into account the next ( k  = 1) approximation (17). The function 
(27) is valid: n >> -0.17. 

(qq,)(x) for that case is 

and the corresponding SG are presented in figure 5 .  The quantisation rule has the form 

R e  x - 

Figure 5. The first SG for the quartic oscillator. 
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(24) under the condition: 

14, a ( q , - l ) O l - ’ d S /  << 1 

where now alq,- 11 is proportional to a - 3  (note however that the whole integrand in 
(30)  has additional dependence on a-’,  analytic when a + C O ) .  

To get the improved energy spectrum we should, of course, perform the integration 
in the quantisation formula (24). Perhaps the simplest way to do this is the numerical 
one. However, to get the asymptotic expression for the energy levels (when (Y + CO) to 
the order a-’ (because of (30)) we should simply expand the integrand in (24) into 
the power series in a-’ and terminate it at a-, term. In this way we obtain 

a (- f 4 q 1 l 2  d t )  +; [ -: f 12 ( 352 (54-1)3’2-(54-1)5/2 556 ) d t ]  = (2n + l ) ~  

where we have changed the contour 1, from figure 5 into the one from figure 4, because, 
due to our expansion, all the singularities at the points A , ,  A: ,  
have disappeared. The solution to (31)  is 

and B , ,  B ; ,  

~ : , = [ ~ ( n + ; ) i i / i , -  r 2 / ( 2 n + i ) T 1 4 / 3  

where E,, is given by (27) and ZI, I ,  are the first and the second integrals on the LHS 

of (31) ,  respectively. 
It is clear from the above how to proceed further in the case considered. The kth 

SG is shown in figure 6. The kth GBS quantisation rule associated with SG of figure 6 
is 

Y /  

Re x - 

Figure 6. The kth SG for the quanic oscillator 
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together with the condition (see appendix 4 ) :  

As explained earlier the LHS of (34 )  is proportional to a - 2 k - ' ,  i.e. to 
( 2 n  is the degree of the polynomial U ( x ) ) ,  and therefore the 

greater k is in (33)  the lower the energies needed to satisfy (34 ) .  
In order to get the asymptotic condition for the energy levels when (Y + 00, valid 

to order we should expand the integrands in (33)  into the power series in cy-' 

and truncate it on the power KZk.  Then all the integrations at (33)  reduce to the ones 
made around the cut AB of figure 4, since all the other singularities contained in the 
blobs of figure 6 disappear due to the expansion. The integrations depend on the 
energy E as the parameter and if they are performed one gets the equations for the 
energy levels in the involved form. Now to invert them remains a problem ofthe method. 

f i Z k + I / ~ ( Z k + l  ) ( n + l ) / n  

4.3. A double-well potential 

In order to see how to proceed in the case of many-well potentials we shall examine 
the potential of the form: 

where a < b < 0 < c < d and f, g > 0. The potential (35)  has therefore two wells and 
two complex conjugate turning points. Of course, all its roots are functions of the 
energy E. 

Performing the quantisation procedure in the case considered, we shall first derive 
exact quantisation rules for the energy using the exact solutions (15) and next we shall 
discuss their corresponding approximations obtained with the help of the formulae (17). 

Let (Irk,  k = 0 , 1 , .  . . , be the solutions of the SE having the kth FF forms and 
corresponding to the potential of (35). We shall consider subsequently the cases k = 0, 1 
and then an arbitrary k. 

q(x)= V ( X ) -  1 = ( x - u ) ( x - ~ ) ( x - c ) ( x - ~ ) [ ( x - ~ ) ~ + ~ ~ ]  (35 )  

4.3.1. k = 0. The SG for this case is shown in figure 7. Let ( I rop ,  p = 1,2 ,? ,  4,4, 5,  be 
the corresponding solutions. The quantisation procedure consists as usual of matching 

Figure7. The zeroth SG for the double-well potential. 
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the wavefunction defined in the sector 1 with GOS defined in 5. However, in the 
considered case, in contrast to the previous ones, there is no common domain to which 
both the solutions can be continued, preserving their FF forms. Therefore to match 
them it is necessary to use the solutions Go, with p = 2,T, 4,q. The corresponding 
procedure has been performed in appendix 3. The exact quantisation formula can be 
written in the form 

)I [ 1 +exp( a i6 ql/’ d & +  is:,,+ i&)] [ 1 + exp ( - a  i6 q”’ d &  - is;,,+ i&, 

= P O  exp[2So(b, c)l  
where p” is given by 

-0 -0 - I t 2  - 1  

exp[2SO( b, c)]) ] cos a -  
[ l + ( l +  I 6Lt12 

0 +2-2+4-a 
p =-2  

1&412 

x exp( i a  i6 q”’ d&-;a (37) 

and the meaning of each quantity in (36) and (37) is defined in appendix 3 .  Note that 
So( b, c )  < 0. 

How does the formula (36) change if we use the W K B J  approximations? We should 
put formally G O p ( x )  = 1 for any p = 1 , 2 , .  . . , 5 .  This means that we can obtain the 
corresponding approximate quantisation condition from (36) putting its R H S ,  and all 
the phases a,,, appearing there, equal to zero. Therefore the W K B J  quantisation 
conditions take the form: 

7 q l ”  d( = (2m + 1 ) ~  

(38) 

i.e. the energy is quantised independently in each well. The necessary conditions for 
the approximations (38) to be valid are similar to those for the one-well case (see 
appendix 4), i.e. 

I I 

On the other hand, as follows from (36), both the conditions (38) obviously fail 
for those energy levels for which exp[2SO(b, c)]  becomes close to unity, i.e. for a narrow 
potential barrier. This conclusion must be in agreement with (39). That this is the 
case can be easily seen by noticing that for the narrow barrier the points B and C are 
close each other. Therefore the integration paths both in 6t-z and in the condition 
(39) have to lie near the points B and C crossing the x axis between them. The points 
B and C, however are singular for the integrands present in $:-a as well as in (39). 
Therefore the corresponding integrals cannot be small. 

4.3.2. k = 1. The corresponding SG is shown in figure 8 (where we have dropped all 
the cut lines). It is seen from the figure that the quantisation procedure can be performed 
similarly to the previous case ( k  = 0). We need only replace the function q , ( x ) ( = q ( x ) )  
by ( q q l ) ( x )  and to change the sub(super)script ‘0’ into ‘1’ in the remaining quantities 
appearing in the formulae (36) and (37). 
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Re x - 

Figure 8. The first SG for the double-well potential. 

Identical changes should be made also in (38) and (39) in order to get the 
corresponding approximate quantisation conditions as well as the conditions of their 
validity in the considered case. It should also be clear that the conclusions of the 
previous discussion of the role of the potential barrier width still remain valid. 

4.3.3. Arbitrary k. The Stokes' graph for the case is shown in figure 9 (where for clarity 
all the cut lines are dropped). This case presents little new for the quantisation 
procedure in comparison with the particular cases considered earlier (except the 
growing complexity of the figure). This is valid for the exact quantisation as well as 
for its approximation. Therefore to get both the exact and the approximate formulae 
one should substitute in ( 3 6 )  and (38) qo by qq, . . . qk and the sub(super)script '0' by 
' k ' .  On the other hand, condition (39) becomes 

ik(qk+I- l ) (qql  . . . a )"d61"  1 lk = I ; ,  1; (40) 

with the paths lk shown in figure 9. 

A Im x 

1 

Figure 9. The kth SG for the double-well potential. 
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4.3.4. General case. For the sake of simplicity but without losing generality we shall 
consider as a general case the one having four real (but different) turning points and 
an arbitrary (but finite) number of complex ones. It is therefore the case of an arbitrary 
polynomial with many wells of which only the two deepest ones are cut by the energy 
level E. Having the experience of the previous cases we can consider directly the case 
of an arbitrary k. Figure 10 shows the corresponding SG (with the cut lines dropped). 
It is clear that the kth GBS conditions look as follows: 

and the conditions for their validity have the form (40) (see appendix 4). The potential 
barrier width plays the same role as before: the rules (41) cannot be used for the 
narrow barriers, for which exp[2Sk(&, c k ) ]  is close to unity. In such cases the 
condition (40) is not valid anymore. However, if both the conditions are fulfilled one 
can estimate the corrections to the energy levels. These estimations are performed in 
appendix 4. 

Figure 10. The kth SG for the arbitrary polynomial potential 

5. Formal asymptotic solutions to the SE and the problem of the resummation 

It is natural to consider the limiting mth FF form of the solution to the SE.  Pushing k 
in (15) to infinity we obtain the following, at least formal, solutions to the SE: 
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where the function f is given by 

At first glance the coth FF forms (42) seem to represent the solutions to the 
resummation problem for the series (5) in any edition as the kth FF form ( k  = 0 ,1 , .  . . ). 
However, this cannot be true since in general the product (43) has to be divergent for 
any polynomial potential except the trivial one, U(x)  = constant. This last statement 
can be justified as follows. If the function f really existed it should be the same for 
any sector of SG (which should also approach their definite limit for k + CO). Therefore 
in the limiting case k +cc there should be only two independent solutions (42) instead 
of as many as the number of different sectors of the a h  SG. On the other hand, the 
solutions (42) correspond strictly to the common asymptotic solutions to the SE (of 
which the number of independent ones is also two). Therefore the solutions (42) can 
be regarded merely as asymptotic in the following sense. 

Letfk(x), k = 0,1,. . . , denote the product of the first k factors in (43) and let $,(x) 
be one of the exact solutions (15 ) .  Then we have, of course, for the appropriate sector 
D” of the Stokes’ graph (see (16) and (17)): 

X Z ( X )  = ~ L ’ / ~ ( x )  exp( ga J x : f ~ / 2 ( ~ )  dC) (44) 

lim [ ~ , ( x ) / x z ( x )  - 1]aZk = o 
a - x  

where CO,- is the infinity point in the sector D“. 
Let us note however that the given kth FF forms can be regarded as the partly 

solved resummation problem for all the lower FF forms. It follows from (15)  that 
between the series ( 5 )  having kth and the Ith FF forms (with k > Z) there is the relation 

x e x p (  (+a Ji (441..  . q / ) ’ i 2 [ ( q l + i . .  . q k ) 1 / 2 - 1 1  dE) Jr(xk(x)). (45) 

Since the series for 4; starts from a higher power of a-’ (i.e. from a-2k-’; see 
appendix 2) than the series for 47, the relation (45) represents a kind of resummation 
performed with the latter series. However, since both the series (5) for $7 and for $; 
are not power series in any variable it is impossible to set u p  the one-to-one correspon- 
dence between the terms of the series appearing on both sides of (45). Therefore it is 
completely obscure in what way the terms of the series for $7 sum to get the coefficient 
standing in front of 6; in (45). This ‘hidden’ resummation makes any comparison 
with other more standard resummation techniques difficult (see, for example, Whittaker 
and Watson 1963). 

Finally, it should be noticed that f ( x )  as a function of a depends rather on C2. 
So, expanding formally f’” into the power series in a-*, we reproduce the result 
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obtained by Froman (1966) by direct manipulation with the corresponding asymptotic 
series. 

6. Conclusions 

We have found the infinite sequence of the new representations for the solutions to 
the SE,  given in the FF form. These new representations have served as a source of 
the corresponding sequence of the approximate solutions to the SE,  generalising the 
well known W K B J  formula. The new approximations have the following features: 

(i) they can approximate the exact solution to the SE at any point (except the 
singular one) with an  arbitrarily fixed level of accuracy, by using the kth W K B J  formula 
with sufficiently high k ;  

(ii) their asymptotic expansions in h (obtained simply as the standard power 
expansions) coincide with those of the exact solutions to a given order in h ;  

(iii) they have the form of the compact W K B J  formula, being in this way its natural 
generalisation. 

The above properties allow us to control in a quantitative way the quantisation 
procedure performed with these generalised W K B J  formulae (see, for example, (34), 
(A4.10) and (A4.13)). In particular they provide us with the relatively simple GBS 

conditions (33) and (41) for the energy spectrum. In general there are no essential 
differences (beyond the growing complexity of SG and integrations) between applica- 
tions of the usual and  the kth ( k  > 0) W K B J  approximations. We have demonstrated 
it using the examples of the quantum oscillators and  the double-well potential and 
describing the procedure in the general case. 

In particular the generalised W K B J  formulae seem to be adequate for practical 
calculations. 

We also found the formal solution to the SE defined by (42) and (43). It has the 
property to generate (simply by power series expansion) the asymptotic expansion in 
h, having the form found previously by Froman (1966). 
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Appendix 1 

We shall show below that by our choice of U ( x )  the behaviour of any q k ( x k ) ,  k z  1 ,  
for large x, is the following: 

4 k ( X k )  - 1 +O(Xi* ) .  (Al .1)  

To see this, let us note that for large x we have 

x1 = (TLY s ' /~ ( [ )  d[ - xn+'  

since U(x)  - x'". 

(A1.2) 
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Next, for ql(xl), as defined by (6), we obtain 
q,(x,(x)) - 1 +O(X-2"-2). (A1.3) 

Formula (A l . l )  for k = 1 follows now from (A1.2) and (A1.3). For k >  1 one can 
proceed inductively noticing that, if (A l . l )  is true for k-1, then for large Xk-1 we 

inductive assumption). So equation (A l . l )  is true for any k 2  1. 
have Xk-Xk-1 (by (11)) and qk (xk(xk-]))=1+o(Xi-l) (ah0  by (11) and by OUT 

Appendix 2 

We shall show below that if a +a we have 
q k  (Xk) - 1 + O( a -2k)  9 (A2.1) 

We shall prove (A2.1) by induction. For k = 1 we have, of course, equation (6) of § 2, 
which we rewrite as 

%(XI )  = 1 +(1/a2)f1(x) (A2.2) 

q2(x2) = 1 +(1/a4)f2(x, l / a 2 )  

where fl(x) is independent of a. By straightforward calculations we get 
(A2.3) 

where f2 is explicitly given by 

(A2.4) 

The function fi is continuously differentiable with respect to x around the point 
l / a 2  =O. Let qk-I(Xk-1) have, by hypothesis, the following form: 

1 
qk-1(Xk-1) = + m . h - I ( x ?  1/a2) (A2.5) 

is differentiable continuously with respect to x around the point l / a 2  = 0. 

qk(Xk)= 1+(1/a2k)fk(X, (A2.6) 

where 
The same straightforward calculations which lead to (A2.3) and (A2.4) now give 

where fk is given by 
- 2  

(A2.7) 

where f a  = q - 1 and qo = q. Of course, (A2.6) proves (A2.1). 

Appendix 3 

We continue here the quantisation procedure for the double-well potential of § 4. The 
analytic continuation of +bel from sector 1 to 5 can be performed by the chain of the 
following equalities: 

$01 = 4 2 4 + 0 2 +  5 ? / 2 4 + 0 j  

$02 = ai/4-a$04+a!/~-4$0a 

$04= az/a-.5$O'oa+ a&5-a$05 

(A3.1) 
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with a?/,+k=limx+mcl [(cloc(x)/(clo,(x)], where 0;)k is the infinity point in the sector k. 
In (A3.1) we made use of the relations (clo~(x) = & k ( . f )  for k = 2,4 .  

Combining equations (A3.1) we get 

$0, = ao(cloz+ P O 4 0 5  (A3.2) 

where 

0 - 0  
(Yo = ( a ? / 2 + 2 f f  2/4+4+ E?/,+zff 2/4+4)a&a+S + ( a Y / Z + S a & O + a +  a ? / 2 + ? a i / 4 + 4 )  

(A3.3) 

The quantisation condition therefore becomes 

ao = 0. (A3.4) 

It needs a little effort to make (A3.4) readable. Namely, let us assume for the qb0, the 
following representations (cf equations (3) and (4)): 

CclOl(X) = qO1l4 exp[So( a, X ) I  Gol 

(A3.5) 

(c105b)  = exp[-So(d, X ) l G o s  

where qo= q, So= S and t,bop(x), p = 1 , 2 , z ,  4 ,3 ,  5, are given by (5 ) .  Using (A3.5) we 
can calculate 'Y$j+k in (A3.3) as follows: 

a7/2+1= -iy?/z+i 

a & 4 + 4  = -i exp fa ( $A q1l2  d5  -fa f, q 1 l 2  d5  - S o ( h  c) 
(A3.6) 

a:,3+5 = &a+s 

where & j + k  = $?+k/$y+k (with 6 7 - k  = Goi (CO,), etc) and the integration paths I;, 1; 
are shown in figure 7. Performing further calculations we need to take into account 
the following general relations: 

$?+kc 6i-i (A3.7) 

valid for any two sectors i, k of the SG communicated by the analytic continuation of 
Goi (or $0,). However, for the case just considered we have additionally 

GY-2 = $044 = 1 

4 0  2+2 -=p  2+2 - $:+a = L. 
Therefore if we put $k+j = exp(i8kj)  we get from (A3.7) and (A3.8): 

60 . = 

6;+2 = 6:+5 = 8;+2 = 

k+J J 

= 0. 

(A3.8) 

(A3.9) 

With the help of (A3.5)-(A3.9), the condition (A3.4) can be written as 

cos a$= -lG;+3/$:-41 COS C Y -  (A3.10) 
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where 

(A3.11) 

The condition (A3.10) can be still further clarified if we note that a:,,-k with 
i,j, kE(2,? ,4 ,4)  cannot all be independent. In fact we have the following relation 
for them, specific for the case: 

atl1-2 = a!,~-d(1 -/aa:4-212) ( A 3 . 1 2 ~ )  

or in terms of rL 

16k/6k412 = 1 + ( 6 h & ~ / l $ k ~ l ~ )  exp[2So(b, c)] .  ( A3.12 b ) 

Equations (A3.12) can be easily obtained by considering the linear dependence 

Substituting (A3.12) into (A3.10) we finally get the quantisation condition (A3.4) 
between the solutions ( C l O k ,  with k = 2 , ? , 4 , 8 .  

in the form given by (36). 

Appendix 4 

We discuss here the conditions (28) ,  (30), (39) and (40) and also estimate the corrections 
to the energy levels obtained with the help of the GBS quantisation conditions. Both 
the conditions and the corrections can be justified by using the exact solutions (15 )  in 
the quantisation procedure instead of their approximations (17). Let us do this first 
for the one-well case. If we do that the quantisation condition (33)  should be replaced 
by 

-7 iA (441 , . . 4k)1'2 d5+26, = ( 2 n  + l ) T  (A4.1) 

where the additional phase 6k in (A4.1) is defined by 

with $E(xk(x)) given by (15) and ( 5 )  and w3 being the infinity point in sector 3 of 
figure 6. It follows from (A4.2) and (5) that is negligible in (A4.1) if 

(A4.3) 

where the paths y are shown in figure 6 .  Indeed, let us write $ ; ( x k ( a 3 ) )  as 1 + a  and 
let b and b' denote the values of the LHS of (A4.3) and (34), respectively. Then, by 
simple estimations, we have 

( a (  < b eb b'< 2b. (A4.4) 

On the other hand, for the phase 6k we have 

( - l ) n + '  
2 i 6 k = ~ n ( l + a ) - ~ n ( l + ~ ) =  ~ ( a "  - a " ) .  (A4.5) 

n z l  n 
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From (A4.5) it now follows that 

ISkl<lal/(l-lal)<21al (A4.6) 

Therefore the condition (34) is at least necessary, if the quantisation condition (33) 

Let us note further that if (A4.3) is fulfilled then we can even estimate the value 

if la1 < t .  
is to be satisfied. 

of 8 k ,  since in such a case the RHS of (A4.5) can be approximated by 

where 7 is the path complex conjugate to y. Therefore for 6k we get 

28k -? kk ( q k t l  - l ) (qql  . . . q k ) ” ’  de. (A4.8) 

Having estimated 8k it is possible to find the corrections to the energy E ,  calculzted 
with the help of the GBS conditions (33). Namely, subtracting (33) from (A4.1) we get 

1 

Substituting (A4.8) in (A4.9) we obtain finally 

n ha, -- AEm -2-- 
E ,  n + l  CY, 

(A4.9) 

(A4.10) 

where 2n is the degree of the polynomial potential U ( x ) .  

for (38) to be valid are 
Let us consider further the double-well case. It is seen from (36) that the conditions 

(A4.11) 

The last two inequalities mean that both the phases 82-4  and S 2 4  have to be small. 
One can therefore reason in the same way as before to obtain the following estimates 
for the phases: 

(A4.12) 
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Following the previous procedure to estimate the energy corrections and using 
(36), (38) and (A4.12) we get for the left well 

(A4.13) 

with the completely analogous expression for the right well. Let us note that in principle 
we cannot drop the exponential term in (A4.13). It can be as large as the second one. 
It should be realised that the corrections (A4.13) do not apply to the energy levels 
calculated by asymptotic expansion in h. Therefore the exponential term in (A4.13) 
cannot be regarded as exponentially small and consequently as subdominant (see, for 
example, Balian et a1 (1979) for the relevant discussion). 
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